164 research outputs found

    The cohomological reduction method for computing n-dimensional cocyclic matrices

    Full text link
    Provided that a cohomological model for GG is known, we describe a method for constructing a basis for nn-cocycles over GG, from which the whole set of nn-dimensional nn-cocyclic matrices over GG may be straightforwardly calculated. Focusing in the case n=2n=2 (which is of special interest, e.g. for looking for cocyclic Hadamard matrices), this method provides a basis for 2-cocycles in such a way that representative 22-cocycles are calculated all at once, so that there is no need to distinguish between inflation and transgression 2-cocycles (as it has traditionally been the case until now). When n>2n>2, this method provides an uniform way of looking for higher dimensional nn-cocyclic Hadamard matrices for the first time. We illustrate the method with some examples, for n=2,3n=2,3. In particular, we give some examples of improper 3-dimensional 33-cocyclic Hadamard matrices.Comment: 17 pages, 0 figure

    Gene expression and matrix turnover in overused and damaged tendons

    Get PDF
    Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Kin5 Knockdown in Tetrahymena thermophila Using RNAi Blocks Cargo Transport of Gef1

    Get PDF
    A critical process that builds and maintains the eukaryotic cilium is intraflagellar transport (IFT). This process utilizes members of the kinesin-2 superfamily to transport cargo into the cilium (anterograde transport) and a dynein motor for the retrograde traffic. Using a novel RNAi knockdown method, we have analyzed the function of the homodimeric IFT kinesin-2, Kin5, in Tetrahymena ciliary transport. In RNAi transformants, Kin5 was severely downregulated and disappeared from the cilia, but cilia did not resorb, although tip structure was affected. After deciliation of the knockdown cell, cilia regrew and cells swam, which suggested that Kin5 is not responsible for the trafficking of axonemal precursors to build the cilium, but could be transporting molecules that act in ciliary signal transduction, such as guanine nucleotide exchange proteins (GEFs). Gef1 is a Tetrahymena ciliary protein, and current coimmunoprecipitation and immunofluorescence studies showed that it is absent in regrowing cilia of the knockdown cells lacking ciliary Kin5. We suggest that one important cargo of Kin5 is Gef1 and knockdown of Kin5 results in cell lethality

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies

    Get PDF
    Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1s dsDNA genome consists of 163,095bp and encodes 271 proteins, exhibiting low DNA (10kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). RL contributed to the genome sequencing analysis, supported by the KU Leuven GOA Grant ‘Phage Biosystems’. JP acknowledges the project R-3986 of the Herculesstichting.info:eu-repo/semantics/publishedVersio

    Whole Exome Sequencing of HIV-1 long-term non-progressors identifies rare variants in genes encoding innate immune sensors and signaling molecules

    Get PDF
    Abstract Common CCR5-∆32 and HLA alleles only explain a minority of the HIV long-term non-progressor (LTNP) and elite controller (EC) phenotypes. To identify rare genetic variants contributing to the slow disease progression phenotypes, we performed whole exome sequencing (WES) on seven LTNPs and four ECs. HLA and CCR5 allele status, total HIV DNA reservoir size, as well as variant-related functional differences between the ECs, LTNPs, and eleven age- and gender-matched HIV-infected non-controllers on antiretroviral therapy (NCARTs) were investigated. Several rare variants were identified in genes involved in innate immune sensing, CD4-dependent infectivity, HIV trafficking, and HIV transcription mainly within the LTNP group. ECs and LTNPs had a significantly lower HIV reservoir compared to NCARTs. Furthermore, three LTNPs with variants affecting HIV nuclear import showed integrated HIV DNA levels below detection limit after in vitro infection. HIV slow progressors with variants in the TLR and NOD2 pathways showed reduced pro-inflammatory responses compared to matched controls. Low-range plasma levels of fibronectin was observed in a LTNP harboring two FN1 variants. Taken together, this study identified rare variants in LTNPs as well as in one EC, which may contribute to understanding of HIV pathogenesis and these slow progressor phenotypes, especially in individuals without protecting CCR5-∆32 and HLA alleles

    Financial and monetary policy responses to oil price shocks: evidence from oil-importing and oil-exporting countries

    Get PDF
    In this study, we investigate the financial and monetary policy responses to oil price shocks using a Structural VAR framework. We distinguish between net oil-importing and net oil-exporting countries. Since the 80s, a significant number of empirical studies have been published investigating the effect of oil prices on macroeconomic and financial variables. Most of these studies though, do not make a distinction between oil-importing and oil-exporting economies. Overall, our results indicate that the level of inflation in both net oil-exporting and net oil-importing countries is significantly affected by oil price innovations. Furthermore, we find that the response of interest rates to an oil price shock depends heavily on the monetary policy regime of each country. Finally, stock markets operating in net oil-importing countries exhibit a negative response to increased oil prices. The reverse is true for the stock market of the net oil-exporting countries. We find evidence that the magnitude of stock market responses to oil price shocks is higher for the newly established and/or less liquid stock market

    New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options

    Get PDF
    Joint trauma can lead to a spectrum of acute lesions, including osteochondral fractures, ligament or meniscus tears and damage to the articular cartilage. This is often associated with intraarticular bleeding and causes posttraumatic joint inflammation. Although the acute symptoms resolve and some of the lesions can be surgically repaired, joint injury triggers a chronic remodeling process in cartilage and other joint tissues that ultimately manifests as osteoarthritis in a majority of cases. The objective of the present review is to summarize information on pathogenetic mechanisms involved in the acute and chronic consequences of joint trauma and discuss potential pharmacological interventions. The focus of the review is on the early events that follow joint trauma since therapies for posttraumatic joint inflammation are not available and this represents a unique window of opportunity to limit chronic consequences
    corecore